Structural Biochemistry/Nucleic Acid/DNA/DNA structure
ثبت نشده
چکیده
Deoxyribonucleic acid (DNA) stores information for the synthesis of specific proteins. DNA has deoxyribose as its sugar. DNA consists of a phosphate group, a sugar, and a nitrogenous base. The structure of DNA is a helical, double-stranded macromolecule with bases projecting into the interior of the molecule. These two strands are always complementary in sequence. One strand serves as a template for the formation of the other during DNA replication, a major source of inheritance. This unique feature of DNA provides a mechanism for the continuity of life. The structure of DNA was found by Rosalind Franklin when she used x-ray crystallography to study the genetic material. The x-ray photo she obtained revealed the physical structure of DNA as a helix. DNA has a double helix structure. The outer edges are formed by alternating deoxyribose sugar molecules and phosphate groups, which make up the sugar-phosphate backbone. The two strands run in opposite directions, one going in a 3' to 5' direction and the other going in a 5' to 3' direction. The nitrogenous bases are positioned inside the helix structure like "rungs on a ladder," due to the hydrophobic effect, and stabilized by hydrogen bonding.
منابع مشابه
Surface Recognition and Complexations Between Synthetic Poly(ribo)nucleotides and Neutral Phospholipids and Their Implications in Lipofection
Thermodynamic features related to preparation and use of self-assemblies formed between multilamellar and unilamellar zwitterionic liposomes and polynucleotides with various conformation and sizes are presented. The divalent metal cation or surfactant-induced adsorption, aggregation and adhesion between single- and double-stranded polyribonucleotides and phosphatidylcholine vesicles was followe...
متن کاملSurface Recognition and Complexations Between Synthetic Poly(ribo)nucleotides and Neutral Phospholipids and Their Implications in Lipofection
Thermodynamic features related to preparation and use of self-assemblies formed between multilamellar and unilamellar zwitterionic liposomes and polynucleotides with various conformation and sizes are presented. The divalent metal cation or surfactant-induced adsorption, aggregation and adhesion between single- and double-stranded polyribonucleotides and phosphatidylcholine vesicles was followe...
متن کاملCellular Morphology and Immunologic Properties of Escherichia coli Treated With Antimicrobial Antisense Peptide Nucleic Acid
Background & Objectives: Antisense peptide nucleic acids (PNA) that target growth essential genes show potent bactericidal properties without cell lysis. We considered the possibility that whether PNA treatment influence the bacteria total nucleic acids content and apply approach to develop a new delivery system to Dendritic cells (DCs). DCs are the most potent antigen presenting cells in th...
متن کاملThe wonders of flap endonucleases: structure, function, mechanism and regulation.
Processing of Okazaki fragments to complete lagging strand DNA synthesis requires coordination among several proteins. RNA primers and DNA synthesised by DNA polymerase α are displaced by DNA polymerase δ to create bifurcated nucleic acid structures known as 5'-flaps. These 5'-flaps are removed by Flap Endonuclease 1 (FEN), a structure-specific nuclease whose divalent metal ion-dependent phosph...
متن کاملSynthesis, Characterization and interaction Studies of 1-(3-bromophenyl azo) 2,7-dihydroxy naphthalene, (BPADHN) with calf thymus deoxy ribo nucleic acid (ct-DNA)
In this study at first , an azo dye, 2,7- naphthalenediol, 2-[(4-Bromophenyl)azo (BPAND) as a ligand has been synthesized by addition of p-Bromoaniline to the modified montomorillonite K10 clay. This ligand was characterized using 1H-NMR, UV-Vis and IR spectroscopies. Subsequently, its interaction with calf thymus deoxyribonucleicacid ,ct-DNA was investigated in 5 mM phosphate buffer solution, ...
متن کاملSequence and structural selectivity of nucleic acid binding ligands.
The sequence and structural selectivity of 15 different DNA binding agents was explored using a novel, thermodynamically rigorous, competition dialysis procedure. In the competition dialysis method, 13 different nucleic acid structures were dialyzed against a common ligand solution. More ligand accumulated in the dialysis tube containing the structural form with the highest ligand binding affin...
متن کامل